Heegaard Floer homology and splicing homology spheres

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involutive Heegaard Floer Homology

Using the conjugation symmetry on Heegaard Floer complexes, we define a three-manifold invariant called involutive Heegaard Floer homology, which is meant to correspond to Z4-equivariant Seiberg-Witten Floer homology. Further, we obtain two new invariants of homology cobordism, d and d̄, and two invariants of smooth knot concordance, V 0 and V 0. We also develop a formula for the involutive Heeg...

متن کامل

Heegaard diagrams and Floer homology

We review the construction of Heegaard–Floer homology for closed three-manifolds and also for knots and links in the three-sphere. We also discuss three applications of this invariant to knot theory: studying the Thurston norm of a link complement, the slice genus of a knot, and the unknotting number of a knot. We emphasize the application to the Thurston norm, and illustrate the theory in the ...

متن کامل

Floer Homology of Brieskorn Homology Spheres

Every Brieskorn homology sphere (p; q; r) is a double cover of the 3{sphere ramiied over a Montesinos knot k(p; q; r). We relate Floer homology of (p; q; r) to certain invariants of the knot k(p; q; r), among which are the knot signature and the Jones polynomial. We also deene an integer valued invariant of integral homology 3{spheres which agrees with the {invariant of W. Neu-mann and L. Siebe...

متن کامل

Heegaard Floer Homology and Alternating Knots

In [23] we introduced a knot invariant for a null-homologous knot K in an oriented three-manifold Y , which is closely related to the Heegaard Floer homology of Y (c.f. [21]). In this paper we investigate some properties of these knot homology groups for knots in the three-sphere. We give a combinatorial description for the generators of the chain complex and their gradings. With the help of th...

متن کامل

Seiberg-Witten Floer Homology and Heegaard splittings

The dimensional reduction of Seiberg-Witten theory defines a gauge theory of compact connected three-manifolds. Solutions of the equations modulo gauge symmetries on a three-manifold Y can be interpreted as the critical points of a functional defined on an infinite dimensional configuration space of U(1)-connections and spinors. The original Seiberg-Witten equations on the infinite cylinder Y ×...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2021

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2021.v28.n1.a4